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STATISTICAL PROPERTIES OF LORENTZ LATTICE GASES

P.-M. Binder

Center for Nonlinear Studies, LOSAlamoe National Laboratory, Loe Alamos, NM 87545

and

Applied Physics Section, Yale University, New Haven, CT 06520

In this paper we present new results for the long-time tails and mean-square displace-

ment evolution for several deterministic and probabilistic models of the Lorentz gas in

a square lattice. The simulations give diffusion coefficients which agree with analytical

results from the corresponding Bcdtzmann equation. For long times, abnormal diffusion

is observed for the deterministic models only. This is probaMy due to recurring traject~

ries, The velocity autocmrelation function show exponents which vary between -1 and -2

depending on the partich+scatterer collision model used.

1. Introduction

This paper contains new results, mostly numerical, on the diffusion and long-time tails

of several iattice models of the Lorentz gas, These models are very similar to those I pre-

sented in a previous paperl, although here 1 will treat both deterrninietic and probabilistic

collision models in a square lattice only, These models are loosely based on recent devel-

2s The main features of these models are that time and space areopments in lattice gaaea ‘ .

discrete, and that particles and nca’terms occupy no volume.

My results are u foliown, (1) Numerical eirnul \tiom for the mean-square displacement

(m.s,d), < Ar2 > vemus time, yield diffusion coefflciente which agree well with analytical

results at the Boltzmann level (low-density) up to scatterer concentrations of 0,3. (2) For

the deterministic collision models only, the m.s,d, becomes constant after long times, of the

order of ueveral hunded mean-free paths, We present numerical evidence to link this rmu[t
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to recurring trajectories.

C(t) =< u(o)v(t) >. This

power varying between -1

(3) I present results for the velocity autocorrelation function,

quantity exhibits a power- law decay (long-time tails) with the

for deterministic rules and -2 for random, uniform scattering.

These results are valid for just a few mean-free paths, before statistical noise takes over.

Xnthe remainder of thie section I will introduce the Lorentz model, and a few hazic

results. In section 2 I will review recent work on lattice models with static disorder,

including the models studied in this paper. In sections 3 and 4 I present the results for

diffusive behavior and long-time tails respectively. A discussion in section 5 concludes this

paper.

The Lorentz gas, in which a single particle moves through an array of randomly placed

tied disk scatterem’ waa originally proposed by Lorentz u a model of electron motion in

a solid. It haa turned out to be, along with Ehrenfest’s wind-tree models, a similar model

with diamond-shaped scatterers, an important test case in kinetic theory. For one thin!g,

the low-density description is given by a linear Boltzmann equation, which has allowed for

explicit analytical solutions. See, for example, Reference (6) for a review. Also, the hi~~h-

density diffusion coefficient has been worked out, at least for the wind-tree model’. Another

aspect of interest in this problem is the C!(t) function defined above. It has been s~own by

momentum conservation arguments that this quantity should go as tdft for d-dimensional

gases, The Lorentz gas do-~ not comerve momentum, and Ernst and Weylandg showed

that for this gaa C(t j * t- fd+illa. There is strong disagreement in two d“nensions between

this result and computer simulations 10. Although at Ieaat two pozsible explanations have

been proposed, one in terms of slow convergence to asymptotic behavioral and the other

in terms of a crossover near the percolation density of scattmers~a, this is still an open

problem. I will now review recent work cm Lorentz-like models in lattices,

2. The Lorentz gas: lattice models

This section begins with two warnings: the survey may not be complete, and there

will be a lot of emphaain on my own models- mainly because the results in the following

two sections ue based on these models.

Gates and otheml$-’8 have studied certain properties of wind-tree models in a lattice,

Each scatterer effectively occupies four lattice sites. In References (13-14), Gates proved

some existence theorems for the diffusion coefficient in these models, One c.f the models

in Reference (14), proposed by Kac, is very similar to my models (it haa point scatterers),
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except that his particles always turn in the same direction. Reference (15) models a kind

of multiple collision studied earlier in Reference (7), by placing parallel mirrors in a lattice.

In a paper meetly about one-dimensional stochastic Lorentz gases, van Beijerens sug-

gests two-dimensional stochastic Lorentz gases on a lattice which are a generalization of

some of the models I study in the next two sections. Apparently, no results existed at

the time for these models. Finally, Ernst and others 11’12have studied hopping models in a

lattice with random excluded sites. Although this problem differs a lot from the Lorentz

gas (for example, the concept of mean-free path makes no sense), it still has the effect

of static disordered structures affecting particle motion. These papers present very inter-

esting results, especially for the velocity autocorrelation function. I will now explain the

models in Reference (1), along with some basic results, as well as the models studied in

the present paper.

Three models were proposed in that paper. We will call them square lattice (S),

triangular, time-alternating (TTA) and triangular, time-independent (TTI). The models

in the present paper are all variations on (S). These models have two common features:

they are discrete in time and they are formulated in a regular plane-filling lattice (square

or triangular). For simplicity, we will take the edge length, time step and velocity of the

particle to be equal to one, so that all distributions, diffusion coefllcients and recurrence

times come out dimensionless. Note that with this simplification the mean free time and

the mean free path are the same. In the first model, the particle moves between the nodes

of a square grid at unit speed. The direction of the particle only changes when it hits a

scatterer (randomly placed at the nodes of the grid). It does so by 34M30,according to the

parity of the time step.

In the other two models, the particle moves in a triangular grid, so that at each node

6 directions - differing b:’ factors of @- are possible. Unless a scatterer is present, the

particle will go through a nod~ without change in velocity. In the TTA case, the particle

will undergo a, 4430° change in direction, according to the parity of the time ntep, In the

‘X’TIcase, a s~:atterer will always cause a 60° deviation in the same direction, so, after 6

collisions, th~’ particle will have traveled in every poesible direction.

In all mo Iels I used a parallelogram-shaped domain with helical boundary conditions,

to ensure th~t in the absence of scatterers the particle would show some semblance of

ergodic behavior, A typical trajectory, obtained in a CA M-6 rnachinele appears in Figure

1.
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I studied three physical properties of these models: (a) the dependence of mean free

path on the density o!:scatterers, which agrees with analytical resultsl’; (b) the long-time

displacement distribution, which is consistent with analytical resultsl”, and (c) the diffusion

coefficient. Although the time dependence of the mean-square displacement shows that this

coeflk ient is well defined, at le~t for short times, its dependence on density of scatterers

disagrees somewhat with analytical results for the Ehrehfest wind-tree model. This is to

be expected from the nature of our model, which does not restrict particle motion at high

density of scatterers.

I also studied the state-transition graphs of the gas viewed as a discrete dynamical

system: these graphs share to a large extent the properties of chaot;clg and randomm

discrete maps for the distribution of limit cycles :

(a) Startiag from an initial condition picked at random, there is a uniform probability

distribution for the length of cycles.

(b) The average length of a cycle that starts from an initial condition picked at random

is ~, where m is the total number of states.

(c) The average number of cycles is equal to In(m).

For the Lorentz gas we see that the property (b) holds for all models, property (a)

holds fairly well (especially for the TTI model), and property (c) is in fair agreement with

the behavior of a chaotic map, and at high scatterer densities agrees well with the result

for a random mapping. Although somewhat indirect, these results are consistent with the

ana!yt ical and numerical results that the Lorent z gas exhibits chaotic behavior 11.

In the prment paper the (S) model will be called the “deterministic” model, and a

version of (S) in which the direction of motion changes at random rather than by the

parity of’ the time step will be called “probabilistic”.

fl~ 3, 13iffuaive behavior

This mction contains results of simulations of both the deterministic and probabilis-

tic models. The scatterers were generated along the trajectory of a single particle with

probability c (c=concentraticm), keeping track o: previously visited sites. Only trajectories

which after 5000 time steps had a number of scatterers agreeing within 5% with the density

were kept for averaging, Figure 2 shows the m,s,d,, < (r(O) - r(t))2 > versus time for (a)

the deterministic model and (b) the

diffusion coefficient can be computed

probabilistic model, for c=o.3. From this plot, the

fiy Einstein’e equational,

< ArZ >= 4Dt 1
4



Figure 3 shows the numerical valuee of D for O.05 < c < 0.3, which compare well with

analytical results for the Boltzmann equation. At low densitiee, for both the deterministic

and probabilistic models, the distribution of particlee is governed by

fi(~+flit~+ 1) = (1 - c)fi(~,~) + ~[fi-l(~t~) + fi+l(~t~)] 2

where $j is the distribution of particlee moving with velocity j (the cyclic index j varies

between O and 3; for example, O is the +x direction), ~. ie a node label, pi is a unit vector

in direction i and c is the concentration.

jj =

Upon substituting the mode expressions

Ajei(q#J-~(:)) 3

one gets four equations for the amplitude Aj. After linearizing and solving for the eigen-

valuea, one gets

4

which is the straight line in Figure 3. A complete derivation for arbitrary collision rules,

of which the ones here are a special case, will be presented elsewhere.

The med striking difference between Figuree 2(a) and 2(b) is the fact that < Ar2 >

stays at a constant value for long enough times. This appears to be caused by limit cycles

in the particle trajectory. These cyclee are only poesible in the deterministic model. The

simplest configuration of scatterers that could support such a trajectory is four scatterers

at the vertices of a 2x2 square.

Figure 4, to explain the time it

of < Arz >. This is an extreme

predicted by J. Machtaas,

I plan to use distributions of theee limit cycles, such as

takee for thiz phenomenon to appear and the final value

caze of the abnormal diffusion studied !n 7, and waa first

4. Velocity autocorrelation fimctions

The simulations here are very similar to thoec in the previouz section, except that

they involve more configurations of scatterers (up to 100,000 as oppoeed to 5,000 fot the

diffusion coefficient) and fewer time stepe (up to 100),

Figure 5 shows C(t) for c=O.3 for (a) the deterministic model and (b) the probabilistic

model, Note that in the deterministic model the curve reflects the influence of the parity

of the time step, which ia nat the caee

C(t) versus log t for the deterministic

curves respectively (c=0,2). After about

in the probabilistic model, Figure 6 shows log

and probabilistic models, the upper and lower

50 time steps, the statistical error becc.:nes very
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large, The fact that the correlation decays more slowly for the deterministic model is

to be expected. The exponents arc independent of density, and appear to be -1 for the

deterministic case and about -1.7 for the probabilistic one. A similar curve for random,

uniform scattering at c=0.1 is shown in Figure 7. This is the only one which agrees with

the prediction C(t) - t‘2. I have at the present no analytical results for these models.

S. Discussion

This paper presents *veral new results for lattice models of the Lorentz gas. It extends

the diffusion calculations of Reference (1) from 20 mean- free paths to a few hundred. It

introduces probabilistic models in addition to deterministic ones, and shows important

differences in their behavior for long times. What we observe in the deterministic model

is an extreme case of the abnormal difusion studied in Reference (7). This is caused

by recurring trajectories, which are an infinite limit of orbiting events. I show that the

recurring events are very common for this model. I also present the Boltzmann-level results

for these models, which indeed show agreement at low density of scatterers. Finally, I show

numerical results ‘or the velocity autocorrelation function. A power law decay is indeed

obeyed, but only one of the models agrees with the theoretical exponent. Two surprising

results ~e the density independence and the model dependence of this exponent.
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F!gure Titles

1. Recurring trajectories in a 252X251 lattice, TTA model, with reflecting boundary

conditions: 25% scatterers (length: 85089);

2. Mean-square displacement versus time: (a) deterministic model, (b) probabilistic

model, for c=o.3.

3. Logarithm of the diffusion coefficient vs. logarithm of the density. Straight line:

Boltzmann equation results; circles: deterministic model; squares: probabilistic model.

4. Distribution of limit cycle lengths for c=O.1.

5. C(t) fo; (a) deterministic model, (b) probabilistic model, c=O.3

6. Logarithm of C(t) versus

the long-time tails. Upper curve:

Scatterer density =O.2.

7. Logarithm of C(t) versus

sity=O.1.

log t. The slope of this cuwe giv the exponent of

deterministic model, lower

log t for random, uniform

curve: probabilistic model.

scattering. Scatterer den-
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